9,920 research outputs found

    Gravitational waves from binary systems in circular orbits: Convergence of a dressed multipole truncation

    Get PDF
    The gravitational radiation originating from a compact binary system in circular orbit is usually expressed as an infinite sum over radiative multipole moments. In a slow-motion approximation, each multipole moment is then expressed as a post-Newtonian expansion in powers of v/c, the ratio of the orbital velocity to the speed of light. The bare multipole truncation of the radiation consists in keeping only the leading-order term in the post-Newtonian expansion of each moment, but summing over all the multipole moments. In the case of binary systems with small mass ratios, the bare multipole series was shown in a previous paper to converge for all values v/c < 2/e, where e is the base of natural logarithms. In this paper, we extend the analysis to a dressed multipole truncation of the radiation, in which the leading-order moments are corrected with terms of relative order (v/c)^2 and (v/c)^3. We find that the dressed multipole series converges also for all values v/c < 2/e, and that it coincides (within 1%) with the numerically ``exact'' results for v/c < 0.2.Comment: 9 pages, ReVTeX, 1 postscript figur

    Scattering of 42 MeV /6.7-pJ/ alpha particles from even isotopes of cadmium. Supplement 1 - Absolute cross sections

    Get PDF
    Absolute cross sections for scattering of 42 MeV alpha particles from even isotopes of cadmiu

    Elastic and inelastic scattering of 42-MeV alpha particles from even tellurium isotopes

    Get PDF
    Angular distributions of elastic and inelastic scattering of 42-MeV alpha particles measured for even tellurium isotope

    Gamma ray angular correlations following inelastic scattering of 42-MeV alpha particles from magnesium 24

    Get PDF
    Angular correlation between inelastically scattered alpha particles and gamma rays emitted in subsequent nuclear decay of magnesium 2

    Delay Induced Instabilities in Self-Propelling Swarms

    Full text link
    We consider a general model of self-propelling particles interacting through a pairwise attractive force in the presence of noise and communication time delay. Previous work by Erdmann, et al. [Phys. Rev. E {\bf 71}, 051904 (2205)] has shown that a large enough noise intensity will cause a translating swarm of individuals to transition to a rotating swarm with a stationary center of mass. We show that with the addition of a time delay, the model possesses a transition that depends on the size of the coupling amplitude. This transition is independent of the initial swarm state (traveling or rotating) and is characterized by the alignment of all of the individuals along with a swarm oscillation. By considering the mean field equations without noise, we show that the time delay induced transition is associated with a Hopf bifurcation. The analytical result yields good agreement with numerical computations of the value of the coupling parameter at the Hopf point.Comment: 4 pages, 5 figures Final revision to appear in PRE Rapid Communication

    Edgeworth Expansion of the Largest Eigenvalue Distribution Function of GUE Revisited

    Full text link
    We derive expansions of the resolvent Rn(x;y;t)=(Qn(x;t)Pn(y;t)-Qn(y;t)Pn(x;t))/(x-y) of the Hermite kernel Kn at the edge of the spectrum of the finite n Gaussian Unitary Ensemble (GUEn) and the finite n expansion of Qn(x;t) and Pn(x;t). Using these large n expansions, we give another proof of the derivation of an Edgeworth type theorem for the largest eigenvalue distribution function of GUEn. We conclude with a brief discussion on the derivation of the probability distribution function of the corresponding largest eigenvalue in the Gaussian Orthogonal Ensemble (GOEn) and Gaussian Symplectic Ensembles (GSEn)

    Formation and stability of self-assembled coherent islands in highly mismatched heteroepitaxy

    Full text link
    We study the energetics of island formation in Stranski-Krastanow growth within a parameter-free approach. It is shown that an optimum island size exists for a given coverage and island density if changes in the wetting layer morphology after the 3D transition are properly taken into account. Our approach reproduces well the experimental island size dependence on coverage, and indicates that the critical layer thickness depends on growth conditions. The present study provides a new explanation for the (frequently found) rather narrow size distribution of self-assembled coherent islands.Comment: 4 pages, 5 figures, In print, Phys. Rev. Lett. Other related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
    corecore